

14505 Seaman Gulch Road, Bella Vista, CA 96008 USA
www.dataray.com | Tel +1 530 472 1717 | eFax +1 530 255 9062

Overview:

¶ Getting Started

o Interfacing with OCX

o Installation

¶ Basic Tutorial

o GUI with MATLAB's GUIDE

o First Button & Image

o More ActiveX Controls

o Extending the GUI

¶ Advanced Tutorial

o MATLAB Controls

o Getting Data

o Events

Getting Started:

Interfacing with OCX
Your interfacing code communicates with DataRay products through the DataRay OCX. The OCX has ActiveX controls that
can be accessed from a variety of Windows based environments. The OCX is automatically generated and registered with
the Windows operating system upon installing the DataRay software. Once initialized, the OCX is always running. This
means that the camera is still running, even while editing GUI elements in Visual Studio or the GUI in MATLABΩǎ D¦L59.
Unfortunately, while this characteristic of the OCX is useful for creating interfaces in some languages, it causes MATLAB to
crash, and as a result, ActiveX components must be added to a GUI interface programmatically. Also, for reasons unknown,
an interface can only be run once per MATLAB session.

Some important notes:

¶ The OCX is functional only as part of a GUI-based program. In this tutorialΣ ǿŜ ǳǎŜ a!¢[!.Ωǎ ΦŦƛƎ ŀƴŘ D¦L59.

¶ Since the OCX is 32-bit, you will need associated 32-bit MATLAB and libraries

¶ The OCX and DataRay program cannot be used at the same time

Installation:
First we need to install the DataRay Software:

¶ As Administrator, install the DataRay software which came with your product.

¶ Attach the profiler product. Allow the drivers to install.

¶ Open the DataRay software and select your profiler in the Device pull-down menu.

¶ Learn to use your product in the DataRay software. Then close the software.

You can download the interface developed in this tutorial. It exists as a collection of 3 MATLAB files.

¶ Cameras: Download & unzip WinCamD

¶ BeamMap2: Download & unzip BeamMap2

This example should build and run with no errors. Not working? Email support@dataray.com or call 530-472-1717 with:

¶ Device name and serial number

¶ DataRay and Windows versions which you are using.

Interfacing to MATLAB

http://www.dataray.com/
https://www.dataray.com/assets/software/MATLAB_WinCamD.zip
https://www.dataray.com/assets/software/MATLAB_BeamMap2.zip
mailto:support@dataray.com

14505 Seaman Gulch Road, Bella Vista, CA 96008 USA
www.dataray.com | Tel +1 530 472 1717 | eFax +1 530 255 9062

Basic Tutorial:

We will show you step-by-step how the example program was created in MATLAB.

GUI with a!¢[!.Ωǎ D¦L59

First, we will make a basic GUI with GUIDE. It supports all the items you would
expect from a GUI library. In a new folder for the 3 files which will compose the
interface, under the HOME tab click Graphical User Interface under the New button.

For our basic interface, we will only
require adding Panels. If you need

more space, you can click the bottom corner and drag to increase the size of your interface. Although we are using ActiveX
controls, do not attempt to use ActiveX Control. The other GUI interface components are fine to use, and we will cover
their use in the Advanced Tutorial section. To create the most basic interface, we will add 3 panels for the start button, the
2D image of the beam and the
Palette. The Dataray class will create
the fourth required GetData control.

Right-click on panel and then click
and drag tƻ ŜǎǘŀōƭƛǎƘ ǘƘŜ ǇŀƴŜƭΩǎ ǎƛȊŜ
(and thereby establish the ActiveX
/ƻƴǘǊƻƭΩǎ ǎƛȊŜύ. Once the panels
which will hold the Active X Controls
have been placed, you may left-click
them and open up the Property
Inspector to select convenient
names for them such as
άǎǘŀǊǘōǳǘǘƻƴέ which will make it
more straight-forward to
programmatically set their ActiveX
controls for them.

http://www.dataray.com/

14505 Seaman Gulch Road, Bella Vista, CA 96008 USA
www.dataray.com | Tel +1 530 472 1717 | eFax +1 530 255 9062

The Property Inspector allows you to change
many aspects of the selected GUI component
ƛƴŎƭǳŘƛƴƎ ƛǘǎ ά¢ŀƎέ ǿƘƛŎƘ Ŏŀƴ be used by
MATLAB to interact with it programmatically.
In order for changes in the Property Inspector
to be saved, you must minimize it and save
the GUI; do not simply exit the Property
Inspector. If the new tag value is not saved, it
will cause the GUI to fail.

Once you save the figure, it will create a .fig
file and a .m file which will work together to
create the GUI. We will edit the .m file to
make it create ActiveX controls

First Button & Image

To add ActiveX components, we use the
handles from the GUI to instantiate them. The
syntax required to instantiate ActiveX control
objects is as follows; you must use the OCX control name, a series of raw coordinates OR those derived from the handle
specified by a tag name, and a handle for the figure itself:

getDataCtrl = actxcontrol('DATARAYOCX.GetDataCtrl.1' , [0,0,1,1] , handles.figure1);

CCDctrl

=actxcontrol('DATARAYOCX.CCDimageCtrl.1' , getpixelposition(handles.twod) , handles.fig

ure1);

The ActiveX controls are vital for communication to and from the instance of the DataRay program created by the
interface. For example, the GetDataCtrl control must be present for the OCX to start and its άStartDriverέ method must be
called for devices to be recognized.

getDataCtrl.StartDriver();

To make the controls accessible by other methods of our GUI class, we will add the Dataray class from Dataray.m to our
GUI object which will hold all of the ActiveX controls. The reason for doing this will become clearer in the Advanced
Tutorial. When the Dataray class is created, the getDataCtrl object is created and the ά{ǘŀǊǘ5ǊƛǾŜǊέ ƳŜǘƘƻŘ ƛǎ ŎŀƭƭŜŘ ŦǊƻƳ
its member variable referring to the GetData ActiveX controls like so:

dObj.getDataCtrl.StartDriver();

The Dataray class has a useful function for setting buttons to the GUI and storing their respective ActiveX controls into an
array:

% set button on top of existing uipanel

function setButtonPanel(dObj,panel_handle,buttonID)

 % create button actxcontrol and place on top of the panel

http://www.dataray.com/

14505 Seaman Gulch Road, Bella Vista, CA 96008 USA
www.dataray.com | Tel +1 530 472 1717 | eFax +1 530 255 9062

 dObj.btnCtrls{ end+1} =

actxcontrol('DATARAYOCX.ButtonCtrl.1' ,getpixelposition(panel_handle),dObj.currentFi

gure);

 dObj.btnCtrls_handles{end+1} = panel_handle; % save handle to panel in an array

 set(dObj.btnCtrls{end}, 'ButtonID' ,buttonID); % set the ButtonID member variabl e

end

The above method on the Dataray class does all of the work for adding buttons to the interface. Adding the following to
ȅƻǳǊ D¦LΩǎ ƻǇŜƴƛƴƎ ŦǳƴŎǘƛƻƴ ǿƛƭƭ ŎǊŜŀǘŜ ǘƘŜ !ŎǘƛǾŜ· ŎƻƳǇƻƴŜƴǘǎ for the interface; make sure to have the handles added
after they have been created:

function basic_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structur e with handles and user data (see GUIDATA)
% varargin command line arguments to basic (see VARARGIN)

% Choose default command line output for basic
handles.output = hObject;

handles.DATARAY = Dataray(handles.figure1); % create DATARAY class
handles.D ATARAY.setCCDpanel(handles.twod)
handles.DATARAY.setButtonPanel(handles.startbutton,297); % set start button
handles.DATARAY.setButtonPanel(handles.button1,171);
handles.DATARAY.setPalettePanel(handles.palette);

% Update handles structure
guidata(hObject, handles);

http://www.dataray.com/

14505 Seaman Gulch Road, Bella Vista, CA 96008 USA
www.dataray.com | Tel +1 530 472 1717 | eFax +1 530 255 9062

More ActiveX Controls

We will now add
more buttons
and profiles to
the interface.
Adding profiles
not only helps
display
information, but
also it provides
the functionality
to pull data from
the camera. We
need to go back
to our GUI and
add more
panels.

The initialization code to initialize this GUI is as follows:

handles.DATARAY = Dataray(handles.figure1); % create DATARAY class

handles.DATARAY.setCCDpanel(handles.twod)
handles.DATARAY.set3DPanel(handles.threed)
handles.DATARAY.setButtonPanel(handles.startbutton,297); % set start button
handles.DATARAY.setButtonPanel(handles.button1,171); % set start button
handles.DATARAY.setButtonPanel(handles.button2,172); % set start button
handles.DATARAY.setButtonPanel(handl es.button3,177); % set start button
handles.DATARAY.setButtonPanel(handles.button4,179); % set start button
handles.DATARAY.setProfilesPanel(handles.profile1,22); % set start button
handles.DATARAY.setProfilesPanel(handles.profile2,23); % set start button
handles.DATARAY.setPalettePanel(handles.palette);

http://www.dataray.com/

14505 Seaman Gulch Road, Bella Vista, CA 96008 USA
www.dataray.com | Tel +1 530 472 1717 | eFax +1 530 255 9062

Extending the GUI

Besides the ƴŀƳŜǎ ƻŦ ǘƘŜ !ŎǘƛǾŜ· ŎƻƴǘǊƻƭǎΣ ȅƻǳ ǿƛƭƭ ƴŜŜŘ ǘƻ ƪƴƻǿ ǘƘŜ L5Ωǎ ŦƻǊ ǎǇŜŎƛŦƛŎ

button and profiles. In order to find the correct Button ID# to use for the buttons, you

need to:

1) Close your GUI and open the DataRay software

2) Right click on any button, to see the dialog on the right

3) Note the current Name and ID# for this result at the top of the dialog

4) Repeat for all the results of interest. Close the DataRay Software

¢ƘŜǊŜ ŀǊŜ ŎƻƳǇƭŜǘŜ ƭƛǎǘǎ ƻŦ L5Ωǎ ŦƻǊ ǇǊƻŦƛƭŜǎ ŀƴŘ ōǳǘǘƻƴǎ ŀǾŀƛƭŀōƭŜ ƛƴ ƛƴǘŜǊŦŀŎŜ ǎŜŎǘƛƻƴ ƻŦ ǘƘŜ 5ŀǘŀwŀȅ ǿŜōǎƛǘŜΥ

Profiles: http://www.dataray.com/UserFiles/file/ProfilesEnum.pdf

Buttons: http://www.dataray.com/UserFiles/file/IndexToTestParametersEnum.pdf

Finally, there is documentation describing the methods and properties of all the ActiveX controls:

http://www.dataray.com/assets/pdf/OCXDocumentation.pdf

This completes the basic tutorial! Problems/Questions? Please contact us with the information listed above

http://www.dataray.com/
http://www.dataray.com/UserFiles/file/ProfilesEnum.pdf
http://www.dataray.com/UserFiles/file/IndexToTestParametersEnum.pdf
http://www.dataray.com/assets/pdf/OCXDocumentation.pdf

14505 Seaman Gulch Road, Bella Vista, CA 96008 USA
www.dataray.com | Tel +1 530 472 1717 | eFax +1 530 255 9062

Advanced Tutorial:

MATLAB Controls

MATLAB provides its own controls and input methods. These can be used to provide custom functionality to your GUI. In
this case, we will be using them to select data to write to a file.

First, we will add one
static text label, one
edit text control
(text input), two
radio buttons in a
button group, one
pop-up meu (a
dropdown list) and
one button to our
GUI with GUIDE:

The button group
component is like a
panel, but it makes
radio buttons
operate as a group;
only one radio
button in a button
group can be
selected. GUI
components can have their properties set programmatically, but in this tutorial, we will use the Property Inspector to set
them.

String: ¶ For most components, the String property will
set the text it displays

¶ For the pop-up menu, we will want to click the
list display of the String property and enter
one choice per line

Value ¶ For radio buttons, 1 is true and 0 is false

¶ For pop-up menus, 1 is the first item, 2 is the
ǎŜŎƻƴŘ ƛǘŜƳΣ ŜǘŎΧ

http://www.dataray.com/

14505 Seaman Gulch Road, Bella Vista, CA 96008 USA
www.dataray.com | Tel +1 530 472 1717 | eFax +1 530 255 9062

Entire tutorials have been written about events and binding in MATLAB. We will stick to the basics. The GUIDE will create
functions which will be called on interactions with the various GUI components. You can specify more actions to take
when, for instance, the component is created or destroyed by right-clicking on the element and selecting view callbacks. In
this case, we will be working with one which is created automatically:

function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%contents = cellstr(get(handles.popupmenu1,'String'));
fprintf('Option %d selected \ n' , get(handles.popupmenu1, 'Value'));
fprintf('%s \ n' , handles.DATARAY.btnCtrls{2}.GetParameter());

¢ƘŜ ŀōƻǾŜ ǇǊƛƴǘǎ ƻǳǘ ǘǿƻ ƛǘŜƳǎ ǿƘŜƴ ǘƘŜ ά²ǊƛǘŜέ ōǳǘǘƻƴ ƛǎ ƘƛǘΦ CƛǊǎǘΣ ƛǘ prints out the item selected in the pop-up menu by
its position. The second item we are printing is the value of the second ActiveX button control we added to the interface;
the first is the start button. In general, the syntax to get the value of a GUI coƳǇƻƴŜƴǘ ƛǎ ƎŜǘόƘŀƴŘƭŜǎΦώŎƻƳǇƻƴŜƴǘΩǎ ǘŀƎϐΣ
άtǊƻǇŜǊǘȅ ƴŀƳŜέύΦ D¦L59 ŀƭǎƻ ǇǊƛƴǘǎ ƻǳǘ ǳǎŜŦǳƭ ǘƛǇǎ ƴŜŀǊ ǘƘŜ ŎŀƭƭōŀŎƪǎ ƻŦ ƛǘŜƳǎΦ

Getting Data

Now that we have an understanding of how MATLAB GUI components can be set up, we will rewrite the callback method
to output data to a comma separated value file with the csvwrite function. Whenever you are writing a file it is crucial to
make sure you have write privileges for the directory by either selecting a public directory or running the program as
administrator. With the following code, we can write .csv files to be analyzed in MATLAB or Excel.

function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%contents = cellstr(get(handles.popupmenu1,'String'));
fname = get(handles.edit1, 'String')
if get(handles.radiobutton1, 'Value') %this is for profiles
 axis = get(handles.popupmenu1, 'Value');
 data = handles.DATARAY.profileCtrls{axis}.GetProfileDataAsVariant();
 csvwrite(fname, data);
else % this is for image data
 data =

handles.DATARAY.getDataCtrl.GetWinCamDataAsVariant();
 denom = 2;
 if

handles.DATARAY.getDataCtrl.Capture IsFullResolution();
 denom = 1;
 end
 display(denom)
 m = handles.DATARAY.getDataCtrl.GetHorizontalPixels()

/denom;
 n = handles.DATARAY.getDataCtrl.GetVerticalPixels()

/denom;
 image_data = reshape(data,m,n)
 csvwrite(fname, image _data);
end

http://www.dataray.com/

14505 Seaman Gulch Road, Bella Vista, CA 96008 USA
www.dataray.com | Tel +1 530 472 1717 | eFax +1 530 255 9062

Both methods return a 1-D matrix of data. Therefore, if you wish to have all the values of the raw pixels in their proper
locations from the GetWinCamDataAsVariant method, it is necessary to reshape the matrix

Events

Besides communicating through interfaces to the DataRayOCX, there is a system of events which allow the DataRayOCX to
communicate back. hƴŜ ƻŦ ǘƘŜ Ƴƻǎǘ ǳǎŜŦǳƭ ŜǾŜƴǘǎ ƛǎ ǘƘŜ DŜǘ5ŀǘŀ ŎƻƴǘǊƻƭΩǎ SendMessage event which is used for internal
communication in the DataRay program; most users are interested in the message with ID # 21 as its 3rd argument which is
used whenever a new frame is available.

The object which listens for events is called a sink. We make a function and pass it to the GetData control as a callback for
the SendMessage event in the Dataray object:

 handlerMessage = @dObj.eventCallback;
 dObj.getDataCtrl.registerevent({ 'SendMessage' ,handlerMessage});
 end

 function eventCallback(dObj,var argin)
 if varargin{3} == 21
 dObj.eventcounter = dObj.eventcounter +1;
 display(sprintf('%d frames seen' , dObj.eventcounter));
 end
 end

This will print out the total number of frames seen by incrementing a counter. Many customers have found this useful for
running data analysis routines on every x number of frames.

http://www.dataray.com/

14505 Seaman Gulch Road, Bella Vista, CA 96008 USA
www.dataray.com | Tel +1 530 472 1717 | eFax +1 530 255 9062

BeamMap2 Tutorial:
You can download the interface developed in this tutorial as a collection of 3 MATLAB files from the link that is available on
the first page of this document. Please build and run this example before you continue. The example should be fully
functional and appear like the image displayed below.

This tutorial is brief because it references many of the techniques described in the Basic and Advanced WinCam tutorials;
however, we will be using Button ID#s, Profile ID#s and functions unique to the BeamMap2. Please make yourself familiar
with the other tutorials before attempting to recreate this example.

Creating DataRay Button Controls
1) Create a GetData Control and a Status Button (ButtonID# = 104) Button Control by using the instructions on pages

1-4 of the Basic WinCam Tutorial.

2) Unlike the WinCam tutorials, this example does not use a ccdImage Control. Instead, this example uses a TwoD
Control. Follow the instructions on pages 3-4 of the Basic WinCam tutorial, but create and use the setTwoDPanel
function (shown below) instead of the setCCDPanel function:
function setTwoDpanel(dObj,panel_handle)

 % create CCD actxcontrol and place on top of the panel

 dObj.TwoDctrl =

actxcontrol('DATARAYOCX.TwoDCtrl.1' ,getpixelposition(panel_handle),dObj.currentFig ure);

end

3) Create the X2c (ButtonID# = 104), Y2c (ButtonID# = 105), and Ellipticity (ButtonID# = 126) Button Controls by using
the same steps you used to create the Status Button, but by substituting in the appropriate ButtonID#s.

http://www.dataray.com/

